

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Mathematical Proficiency & Contextual Mathematics InterEducation Workshop

Dr Aibhín Bray

28th November 2024

Who am I?

 Lecturer and researcher in the School of Education, Trinity College Dublin

- Trinity Access Programmes

Maths Teacher

Åccess Maths

Learning Intentions

We are learning to...

- Understand the components of Mathematical Proficiency
- Identify and maximise opportunities for developing mathematical proficiency.
- Understand of rationale behind Realistic Maths Education and Bridge21
- Feel more confident structuring project-based maths activities

PLAN

Morning

10:00 Set-up : Ice breakers 10:10 Warm-up: Team formation 10:25 Mathematical Proficiency 11:25 Bridge21 and RME 11:45 Activity 1: Investigate, Create, 12:00 Activity 1: Present 12:10 Break

12:25 Activity 2 12:35 *Plan*12:45 *Investigate*, *Create*, *iterate*13:40 *Present* and 13:50 *Reflect*14:00 End

Afternoon

Ice breaker

Knowing me, knowing you – 10 minutes

Team Formation

Group task – 2 minutes

Your warm-up task...

10 minutes

Problem:

How much would it cost to fill this room with €2 coins?

Trinity College Dublin

Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Policy Background

What does it mean to be a proficient maths student Do you agree?

Proficient

Proficient - Meaning:

Adjective. To be very skilled and capable at something.

Proficient students expect mathematics to make sense. They take an **active stance** in solving mathematical problems. When faced with a non-routine problem, they have the **courage** to plunge in and try something, and they have the **procedural and conceptual tools** to carry through. They are experimenters and inventors, and can **adapt** known strategies to new problems. They think strategically.

(Phil Daro, 2010, quoted in Burkhardt & Schoenfeld, 2019)

The Irish Curriculum – Lower Secondary

Junior Cycle Maths (2018)

The aim of junior cycle mathematics is to provide relevant and challenging opportunities for all students to become mathematically proficient:

- 1. conceptual understanding
- 2. procedural fluency
- 3. strategic competence
- 4. adaptive reasoning
- 5. productive disposition

(Kilpatrick et al., 2001, p117)

What do these mean?

Learning Intention:

To identify and maximise opportunities for developing mathematical proficiency.

Success Criteria:

I can explain the five components of mathematical proficiency.

I can identify which components of mathematical proficiency are developed by various tasks.

Activity

Engage with a task as if we were students in a lower secondlevel Maths class

Examine the components of mathematical proficiency Discuss how the components of mathematical proficiency can be developed using Tasks

10 mins

Discussion

What features are important in tasks/activities for students to learn mathematics successfully?

5 mins

Trinity College Dublin, The University of Dublin

Properties of a "rich" task

(Ahmed, 1987)

- Must be accessible to everyone
- Allows further challenges
- Invites children to make decisions
- Involves children in speculating, hypothesis making, testing, proving, explaining, reflecting, interpreting

Low floor

High

ceiling

Wide

walls

- Promotes discussion and communication
- Encourages originality and invention
- Encourages 'what if' and 'what if not' questions
- Should be enjoyable
- Contains an element of surprise

This Photo by Unknown Author is licensed under CC BY-SA-No

Rich vs. impoverished tasks (Malcolm Swan, Mathsfest 2012)

 Development of *fluency* can be embedded in **rich** tasks... but typical "define – show example – provide practice" sequences (in many textbooks) aiming at fluency are **impoverished** tasks.

And perhaps (John Mason, Mathsfest 2012)

- It is not the *task* that is rich ... but **whether it is used richly**
- What matters more than the particular answer is ...
 - How do you know?
 - What can you vary and still the same approach works?

Someone has written a sentence containing only five words, the mean number of letters per word is 4, but none of the words has four letters. What might the sentence have been?

Properties of a "rich" task

(Ahmed, 1987)

- Must be accessible to everyone
- Allows further challenges
- Invites children to make decisions
- Involves children in speculating, hypothesis making, testing, proving, explaining, reflecting, interpreting

Low floor

High

ceiling

Wide

walls

- Promotes discussion and communication
- Encourages originality and invention
- Encourages 'what if' and 'what if not' questions
- Should be enjoyable
- Contains an element of surprise

This Photo by Unknown Author is licensed under CC BY-SA-No

Activity

Engage with a task as if we were students in a lower secondlevel Maths class

Examine the components of mathematical proficiency Discuss how the components of mathematical proficiency can be developed using Tasks

10 mins

Activity

Examine the components of mathematical proficiency

Mathematical Proficiency

'...mathematical proficiency is conceptualised not as a one-dimensional trait but as having five interconnected and interwoven components.'

Junior Cycle Mathematics Specification p.5

Adaptive Reasoning

'The capacity to think logically about the relationships among concepts and situations.'

Can you **prove** that in each of these images the area of the red quadrilateral is exactly half the area of the yellow square?

'The ability to formulate, represent, and solve mathematical problems in both familiar and unfamiliar contexts.'

aceptual

Productive

Disposition

Procedural Fluency

Strategic Understanding

Adaptive Competence

Reasoning

Students with **Strategic Competence** can:

- formulate mathematical problems
- represent mathematical problems accurately
- develop possible solutions •
- evaluate the accuracy of their solutions

Strategic Competence

Question Posing

Is there something that you would like to research or investigate based on the image?

Conceptual Understanding

'Comprehension of mathematical concepts, operations, and relations'

Students with Conceptual Understanding can:

- learn new ideas by connecting those ideas to what they already know
- represent mathematical situations in different ways
- see how the various representations connect with each other
- see the deeper similarities between superficially unrelated situations

Conceptual Understanding

https://mathigon.org/

'Habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence, perseverance and one's own efficacy'.

Students with **Productive Disposition** believe:

- mathematics should make sense
- that they can solve mathematical problems through productive struggle
- becoming mathematically proficient is worth the effort.

Productive Disposition

Real Life Connections

Brian Rushe Dairy Farmer Vice-President IFA

Procedural Fluency

Skill in carrying out procedures flexibly, accurately, efficiently, and appropriately

Students with Procedural Fluency can:

- estimate the result of a procedure
- practice of the skills they are learning
- apply procedures flexibly
- decide the appropriate tool for a given situation

Procedural Fluency

Practicing Procedures

Can you find every number between 1 and 20 using only 4's and any operation?

padlet.com/oideppmaths/oide-maths-cluster-resources-october-23h7wkfoz599s3nybj/wish/2810517281

Promising in theory...

... but not always easy in practice

"Students need to be regularly given high quality tasks that require them to engage with the processes promoted by the revised syllabuses"

Jeffes, J., Jones, E., Wilson, M., Lamont, E., Straw, S., Wheater, R., & Dawson, A. (2013). Research into the impact of Project Maths on student achievement, learning and motivation: final report. Slough: NFER

Mathematical Proficiency

Is this the "goal" of maths education?

- 1. conceptual understanding—comprehension of mathematical concepts, operations, and relations
- procedural fluency—skill in carrying out procedures flexibly, accurately, efficiently, and appropriately
- **3. strategic competence**—ability to formulate, represent, and solve mathematical problems in both familiar and unfamiliar contexts
- **4. adaptive reasoning**—capacity for logical thought, reflection, explanation, justification and communication
- 5. productive disposition—habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence, perseverance and one's own efficacy

(Kilpatrick et al., 2001, p117)

Junior Cycle Maths Specification

https://www.jct.ie/perch/resources/maths/junior-cycle-mathematics-specification-2018.pdf

Classroom-based Assessments (CBAs):

Relate to the priorities for learning and teaching in mathematics, with a particular emphasis on problem solving and communicating.

(Specification for Junior Cycle Mathematics, p22)

Trinity College Dublin

Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Pedagogical Framework

1. Realistic Mathematics Education (RME)

2. Student-centred, innovative pedagogies – Bridge21

Realistic Mathematics Education RME

"RME is an approach to mathematics education that involves students developing their understanding by exploring and solving problems set in contexts that engage their interest"

(Tangney, Bray & Oldham, 2015)

- 1. The importance of problems set in **Contexts** that are real to the students.
- 2. The attention paid to the development of **models**
- 3. The contributions of the students by means of their own **productions** and **constructions**.
- 4. The **interactive** character of the learning process.
- 5. The **intertwinement** of learning strands.

Hans Freudenthal (1905 - 1990)

Realistic Mathematics Education

RME: Mathematization

Compare this to the NCCA documentation

Guidelines for the Classroom-Based Assessments

Classroom-based Assessment 1: Mathematical Investigation

The Mathematical Investigation comprises of four areas of activity:

- 1. defining the problem statement,
- 2. finding a strategy and translating it to mathematics (if necessary),
- 3. engaging with the problem and solving it if possible,
- 4. and interpreting the solution in the context of the original problem.

Students may *collaborate with peers* at various stages during the process and then compile a report of their findings individually.

National Council of Curriculum and Assessment. 2019. Guidelines for the classroom-based assessments and assessment task. Dublin: NCCA, p12

The Classroom Contract

Students take more responsibility for their own and their peers' learning.

Bridge21 Groupwork Model

Levels of Technology Adoption

Bridge21 Activity Model

Bridge21 Activity Model

Mathematics

- Set-Up: Ice breaker and team formation
- Warm Up: Divergent thinking activity
- **Investigate:** Explanation of the problem context.
- Plan: Group planning.
- **Create:** Exploration with resources.
 - In the field.
 - In the classroom.
- **Create:** Modelling and Calculation:
 - Analysis and Synthesis.
- **Present:** Competition and/or Presentations.
- **Reflect:** Reflection and Discussion.

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath

The University of Dublin

Activity 1

Which is bigger...?

Think fast...

Three pizzas of 7" diameter, two pizzas of 9" diameter, or one pizza of 16" diameter?

Pizza Maths

Challenge – the Big Problem:

You have a budget of €50 to feed your team

- 1. How can you get the most Margherita pizza?
- 2. What area of pizza is that?

Possible Websites:

- <u>https://www.just-eat.ie/restaurants-teach-pizza-dublin/menu</u>
- <u>https://www.just-eat.ie/restaurants-papa-johns-westmoreland-street-dublin2/menu</u>
- <u>https://www.just-eat.ie/restaurants-basewoodfiredpizza-glenageary/menu</u>

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath

The University of Dublin

15 minute break!

Trinity College Dublin

Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Investigate Phase

Bridge21 Activity Model

Investigate

The Barbie Bungee

"Big Problem" or Challenge:

Using a doll, rubber bands, and some free software, calculate how many bands it would take to give Barbie an exhilarating, but safe jump from a height?

http://illuminations.nctm.org/Lesson.aspx?id=2157

Homemade BeanBag

- Sock/plastic bag filled with
 - Rice
 - Lentils
 - Baking beans
 - Stones
 - Sugar

— ...

Team Task 1 Brainstorm ideas

Kinovea Demo

Trinity College Dublin, The University of Dublin

Trinity College Dublin

Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Plan – Create – Investigate Cycle

Bridge21 Activity Model

Plan – Create – Reflect - Investigate

Plan: Team develop a task list, identify roles, schedule and resources.

Create: Teams are encouraged to execute, create, review, evaluate and reflect.

Collect the resources you will need and apply your plan.

Extra Scaffolding

https://tinyurl.com/ExpressDiving

Trinity College Dublin

Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Present your work...

Bridge21 Activity Model

Plan – Create – Reflect - Investigate

Competition time!

Show us what you got!

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath

The University of Dublin

Reflect

Bridge21 Activity Model

Plan – Create – Reflect - Investigate

Reflection

Reflection

- Was the activity successful? Why?
- What skills should the activity engender in the participants.
- What are the generic design principles that lead to a successful activity of this kind?

Things to Consider

- Generation of key mathematical skills.
- Relevance to the curriculum.
- Collaboration and teamwork.
- Classroom orchestration.

Successful because...

Need to address...

That's all folks!

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath

The University of Dublin

Thank You

